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Measurements are presented for low-Reynolds-number turbulent boundary layers 
developing in a zero pressure gradient on the sidewall of a duct. The effect of rotation 
on these layers is examined. The mean-velocity profiles affected by rotation are 
described in terms of a common universal sublayer and modified logarithmic and 
wake regions. 
. 

The turbulence quantities follow an inner and outer scaling independent of 
rotation. The effect appears to be similar to that, of increased or decreased layer 
development. Streamwise-energy spectra indicate that, for a given non-dimensional 
wall distance, it  is the low-wavenumber spectral components alone that are affected 
by rotation. 

Large spatially periodic spanwise variations of skin friction are observed in the 
destabilized layers. Mean-velocity vectors in the cross-stream plane clearly show an 
array of vortex-like structures which correlate strongly with the skin-friction pattern. 
Interesting properties of these mean-flow structures are shown and their effect on 
Reynolds stresses is revealed. Near the duct centreline, where we have measured 
detailed profiles, the variations are small and there is a reasonable momentum 
balance. 

Large-scale secondary circulations are also observed but the strength of the pattern 
is weak and it appears to be confined to the top and bottom regions of the duct. The 
evidence suggests that it has minimally affected the flow near the duct centreline 
where detailed profiles were measured. 

1. Introduction 
The effect of streamline curvature in the plane of mean shear has long been known 

to cause surprisingly large changes in the structure of turbulent shear flow. Surface 
curvature has been the most common example and Bradshaw (1973) gives an 
excellent review of earlier work. Publications since that review include Hunt & 
Joubert (1979), Smits, Young & Bradshaw (1979) and Jeans & Johnston (1982). These 
studies have shown that even very mild curvature of the mean flow leads to sub- 
stantial changes in the mean-velocity , turbulence-intensity and shear-stress distri- 
butions when compared with the corresponding straight flows. Many investigators, 
e.g. Tani (1962), have also reported the existence of longitudinal flow structures in the 
boundary layers over concave walls and have suggested that there could exist an 
array of counter-rotating turbulent vortices analogous to the Taylor-Gortler vortices 
in laminar boundary layers over concave walls. The effect of the Coriolis force is 
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equally striking but fewer investigations have been reported where the mean- 
streamline curvature is supplied by system rotation. These include Moore (1967) and 
Johnston, Halleen & Lezius (1972) who looked at  the effect of rotation about a 
spanwise axis on fully developed turbulent duct flow, and Hill & Moon (1962), 
Moon (1964) and Koyama et al. (1979a, b) who studied the effect of rotation on 
boundary layers developing on the walls of a straight duct. 

It is well known that there exists an analogy concerning the stability of laminar 
shear flow over curved and rotating boundaries and laminar flows with buoyancy. 
Various attempts have been made to extend the analogy to predict the observed 
effects of mean streamline curvature on the development of turbulent shear flows. 
In turbulent flow the similarity between the three types of body force is weaker since 
buoyancy forces depend on temperature fluctuations while the centrifugal and 
Coriolis forces depend on velocity fluctuations. Moreover the Coriolis force is 
proportional to velocity while the centrifugal force varies as the square of the velocity. 
Also the instantaneous Coriolis force is always normal to the instantaneous velocity 
vector and consequently is not associated with energy production (i.e. it is con- 
servative) while the centrifugal force is non-conservative. Nevertheless, like the 
Reynolds analogy between heat and momentum transfer, the analogy has proved to 
be of practical use in prediction methods. 

Various terms have been used to refer to the particular walls of a rotating duct. 
The names pressure and suction side originate from the pressure gradient due to the 
Coriolis force. The terms leading and trailing sides refer to the impeller blades in 
rotating machinery. The authors prefer to use the terminology destabilized and 
stabilized sides referring to the action of the Coriolis instability on the shear layers 
on these sides (see Bradshaw 1973). For the conditions as shown in figure 1 (b), the 
wall shown is the pressure, leading or, as we will refer to it, the destabilized side of 
the duct. 

There is another, more indirect, way in which the action of system rotation can 
affect the layers on the sidewalls of a rotating duct. The shear layers that form on 
the top and bottom walls of the duct (i.e. perpendicular to the axis of rotation) are 
known as Ekman layers. The imbalance between the Coriolis force and the pressure 
force acting on the slower-moving particles in the top- and bottom-wall Ekrnan layers 
deflects fluid towards the stabilized side of the duct, causing secondary circulations 
to occur. Hill & Moon (1962) reported preliminary measurements of turbulent 
boundary layers developing on the walls of a rotating rectangular duct. The aspect 
ratio (height/width) of the duct was near unity and the results were significantly 
affected by secondary flows. A subsequent investigation was made by Moon (1964) 
where the aspect ratio of the duct was increased to 2 : 1 and the length increased so 
that measurements could be made a t  a number of streamwise stations. Marked 
increases in turbulence intensity, Reynolds stress and skin friction were observed on 
the destabilized side of the duct. Unfortunately these results were also affected by 
the large-scale secondary flows. The higher shear stresses observed in the destabilized 
layers could be due to the increased turbulent momentum exchange or to the 
removal of boundary-layer fluid by the secondary circulations. Similarly the lower 
shear stress on the stabilized side could be caused by secondary-flow depositions or 
by reduced momentum exchange. The inability to differentiate between these two 
effects is obviously undesirable. While the effects of secondary flows are important 
in many practical situations the most fundamental question about the effects of 
system rotation on turbulent shear layers is concerned with the Coriolis instability. 

One method of studying the effect of the Coriolis instability in isolation is to 
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increase the aspect ratio of the duct so that the secondary circulations are moved 
further away from the duct centreline. Moore (1967) examined the relative importance 
of the Coriolis instability and large-scale secondary flows by conducting experiments 
in fully developed turbulent flow in rectangular ducts of different aspect ratios. The 
effects of rotation on the centreline mean-velocity profiles were significant in +: 1 and 
1 :1 aspect-ratio ducts while much smaller effects were observed in 4:l and 7):l 
aspect-ratio ducts. Moore found that the mean velocity profiles obtained on the 
centreline of a 4 : 1 aspect-ratio duct are the same as those on the centreline of a 7): 1 
aspect-ratio duct within the experimental uncertainty. 

Johnston, Halleen & Lezius (1972) also studied the effect of spanwise rotation on 
fully developed turbulent duct flow. The aspect ratio of the duct was 7: 1 and the 
working fluid was water. Quantitative measurements were limited to mean-velocity 
profiles. The facility provided a unique opportunity to study the effect of rotation 
on the motions in the viscous wall region using wall-slot dye-injection and hydrogen- 
bubble-wire flow-visualization techniques. The non-dimensional wall-layer streak 
spacing was found to be the same as that observed by Kline et al. (1967) in a turbulent 
boundary layer. In  the destabilized wall layer the rate of bursting was found to 
increase with increasing rotation rates, until, at moderate rotation rates, the bursting 
of the wall-layer streaks away from the wall appeared to evolve into spanwise arrays 
of roll cells which were seen to penetrate more than half way across the channel. The 
roll-cell structures were seen to form, wave about and decay in a very unsteady 
manner. Fresh dye released underneath the roll cells indicated that the formation of 
the wall-layer streaks appeared to be independent of the motions occurring above 
them. In the stabilized layers the rate of bursting was found to decrease for increasing 
rotation rates until at moderate rotation rates spot-like disturbances typical of 
laminar-turbulent transition were observed. 

Koyama et a,?. (1979~) conducted an investigation into the effect of the Coriolis 
force on the turbulent boundary layers forming on the sidewalls of a constant-area 
straight duct with an aspect ratio of 7 : 1. Mean-velocity and streamwise-turbulence 
measurements were obtained with a normal hot wire at different streamwise stations, 
for a number of rotational speeds and for two free-stream velocities. Koyama et al. 
found that the boundary-layer development was promoted on the destabilized side 
of the duct and that the skin friction there was considerably higher than for zero 
rotation. Opposite trends were observed in the stabilized layers. Semi-logarithmic 
plots of the mean-velocity profiles in wall coordinates revealed that the viscous 
sublayer and buffer regions appeared little affected by system rotation. However, in 
the region where the logarithmic law of the wall is observed for zero rotation, the 
profiles appeared to lie on straight lines which deviate from the usual law. Koyama 
et al. used modified logarithmic-law-of-the-wall constants to describe their results and 
proposed that these were a function of an inverse Rossby number. 

One of the advantages of studying fully developed duct flow is that the flow 
structure should be independent of the entry conditions and invariant with streamwise 
distance. For a given duct length, the width has to be narrow enough to obtain fully 
developed turbulent flow, which often conflicts with the need to have a duct that 
is wide enough to allow the flow to be investigated in some detail. Further, a wide 
duct tends to render negligible any flow disturbances caused by small variations in 
wall spacing or by the presence of probes. For a rotating duct the length is limited; 
Moore, for example, had to use a duct only 19 mm wide to get fully developed flow 
at his measuring station. This problem is avoided if the subject of study is the effect 
of rotation on developing turbulent boundary layers since the requirement here is 
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that the duct is wide enough to isolate the layers on either side by a non-turbulent 
core. However, the short length of a rotating duct requires the study of low- 
Reynolds-number developing turbulent boundary layers. It is surprising that there 
is a lack of reliable data for this flow, considering the frequency of its occurrence. While 
the scaling laws of the turbulent boundary layer can be regarded with some certainty 
at high Reynolds numbers the same cannot be said of the low-Reynolds-number case. 
It is apparent that a study should be conducted to ensure that a layer conforms to 
known properties before subjecting it to rotation. 

The turbulent wall regions of fully developed duct flow and boundary layers are 
thought to be identical for zero rotation. However, the mean-velocity profiles of 
Koyama et al. in a rotating boundary layer show deviations from the logarithmic law 
of the wall that are of a different form to the results of Johnston et al. and Moore 
in rotating-duct flow. Part of the reason for the differences could be the higher 
resolution that is available in a turbulent boundary layer. Also, from,the observations 
of Johnston et al. it is not completely certain whether the wall layers on the stabilized 
side of the duct are absolutely isolated from the roll cells emanating from the 
destabilized layers on the opposite wall. The study of the effect of rotation on an 
isolated turbulent boundary layer may provide some new insight into the influence 
of the Coriolis force. 

2. Theoretical background 

in a rotating Cartesian coordinate system may be written as, 
The momentum equations for an incompressible constant-property fluid observed 

(1) 
au 1 
-++V(V. U)+(o+28)  x U + 8 x  (Sax r )  = --VP+vVZU, 
at P 

where r is the radius vector, U and o ( = V x U) are the velocity and vorticity vectors 
as measured in the rotating frame and 0 is the rotation rate. The last term on the 
left-hand side can be expressed as the gradient of a scalar (the centrifugal pressure) 
and so be included with the absolute pressure gradient. The centrifugal pressure 
gradient is irrelevant to the dynamics of a constant-property fluid in the same way 
as the hydrostatic pressure gradient is irrelevant to water-channel flow for example. 
The effect of rotation is simply equivalent to adding uniform vorticity throughout 
the corresponding flow in an inertial frame. The extra term 2 0  x U is known as the 
Coriolis inertia force. If the equations are written using the more conventional 
convective derivative for the inertia forces and then non-dimensionalized by letting 
L, Q-1 and U characterize typical length, time and velocity scales of a particular 
motion, then two important dimensionless parameters appear, 

au 2 8  --+ RO UVU+- x U = -VP,.+ EV'U. 
at 181 

The Ekman number E =  v/QL2 is a measure of how the typical viscous force 
compares with the Coriolis force. It is essentially the inverse Reynolds number of the 
flow. The Rossby number Ro = U / Q L  is the ratio of the convective inertia forces to 
the typical Coriolis force and provides an overall estimate of the relative importance 
of the nonlinear terms. It is convenient to use the reciprocal values of these 
parameters to avoid the singularity when 8 = 0. 

Mager (1951) integrated the general case of the three-dimensional boundary-layer 
equations for layers developing on rotating boundaries. For two-dimensional layers 
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the momentum-integral equation is the same as that without rotation and offers little 
guidance to the mechanism by which rotation may affect the structure of a turbulent 
boundary layer. Prandtl (1931) made the first attempt to account for the effects of 
streamline curvature by multiplying the mixing length by a factor which is a function 
of a dimensionless curvature or buoyancy parameter. Prandtl’s predictions were later 
found to be an order of magnitude less than subsequent experimental observations. 
More recently Bradshaw (1969,1973) used the analogy between streamline curvature 
and buoyancy to argue that the factor affecting the apparent change in mixing length 
should depend on the gradient Richardson number. He then used the analogy to apply 
meteorological data to curved shear flows. He found that the use of a Monin-Oboukhov 
formula considerably improved the agreement between prediction and experiment 
for flow over curved surfaces provided the shear-layer thickness exceeds about 11300 
of the radius of curvature. So (1975) attempted to reduce the empiricism of 
Bradshaw’s analysis by deriving an eddy-viscosity function from the turbulent- 
energy equation. He showed that the eddy-viscosity function can be put in the form 
of a correction factor for the mixing length and that for small Richardson numbers 
the Monin-Oboukhov formula is obtained. Bradshaw’s analysis leads to a model for 
the mean flow which results in an extra linear term being added to the logarithmic 
law of the wall as follows, 

U+=-lny++C--, 1 2QBY 
K u7 

(3) 

where B is the Monin-Oboukhov coefficient U+ = U/u7 and y+ = yu7/v.  
Some insight into the effect of rotation can be gained by considering the turbulent- 

energy equation and the turbulent-shear-stress transport equations (see Hunt & 
Joubert 1979). In contrast to the momentum equations, these equations contain extra 
terms representing identifiable additional processes owing to system rotation. The 
streamwise component of the turbulent-energy equation contains the extra ‘pro- 
duction ’ term 2 8 u ”  while the component normal to the wall contains the extra term 
- 2 8 u ” .  The transverse component (in the z-direction) is unaltered from the 
zero-rotation form. Summation of the components leads to the equation for the total 
energy, which is unaltered from the zero-rotation form. This is to be expected from 
the conservative nature of the Coriolis force, The extra terms may be interpreted as 
representing a conservative reorientation of the flow structure since energy is 
transferred without loss between the streamwise direction and the direction normal 
to the wall. The turbulent-shear-stress transport equation contains the extra ‘pro- 
duction’ term ~ L ? ( u ’ ~ - v ’ ~ ) .  The change in the Reynolds stress relative to the case 
of zero rotation might be expected to be of the order 1 + 2 8  aU/ay (see Bradshaw 
1973). However, the observed changes in the Reynolds stress are found to be an order 
of magnitude greater than expected. In  a developing flow, it is difficult to apply these 
equations since both the extra terms owing to rotation and the usual terms for a 
stationary flow would be changing with streamwise development. Our results suggest 
that the rate of boundary-layer development is affected by rotation. 

_ -  

3. Apparatus, instrumentation and techniques 
The open-return tunnel is shown schematically in figure 1 (a ) .  Air flow is provided 

by a two-stage axial-flow fan which is fixed one floor level above the rotating 
assembly. The flow passes into the rotating ductwork through a honeycomb which is 
fixed to the duct the purpose of which is to ensure that the entry flow becomes 
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I I 

4. Honeycomb Rotating duclwork 
5. Round- to-rectangular section 
6. Screens 
7. Contraction 
8. Working section 
9. Exit nozzle 

10. Instrumentation 
11. Dynamic calibrator 
12. D.c. molon 
13. Gearbox 
14. Bearings 
15. Slipring assembly 
16. Floor levels 

FIGURE 1.  Schematic of apparatus: (a) overall view; ( b )  sectioned view of duct. 
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approximately irrotational relative to the ductwork under all conditions. The 
working section consists of a duct of rectangular section with two hinged straight 
Perspex sidewalls. The aspect ratio is 4: 1. All measurements are taken in the 
boundary layers that form on one wall, the other having tightly fitting plugs to allow 
a bidirectional traverse to be installed at different streamwise stations. The tunnel 
can be rotated in either direction. The sidewalls of the duct have been adjusted so 
that the pressure-coefficient distribution on the duct wall and the free-stream-velocity 
distribution across the duct are uniform to within 1 % for all conditions reported in 
the experiments. Pressure coefficients have also been measured along the centreline 
of the contraction walls and there are no signs of flow separation. Negligible differences 
are observed between the values obtained when the tunnel is stationary and when 
it is rotating for the range of flow speeds used in the experiments. Figure 1 (b) is a 
sketch of the duct showing the coordinate system and relevant dimensions. For all 
measurements presented here the rotational speed is 60 r.p.m. 

The entry laminar boundary layers are tripped with a 1.5 mm diameter trip wire 
and reach a thickness of about 35 mm by the last station. Adopting the recommen- 
dations of Bradshaw (1965) for the final screen, the spanwise variation of the 
skin-friction coefficient in the layers waa reduced to less than +2.5y0 and the 
free-stream-turbulence intensity is less than 0.15% for zero rotation. When it is 
rotating, the tunnel creates an external swirling flow in the laboratory which was found 
to cause unsteady puffing of the free-stream inside the working section. An end baffle 
is fitted to the exit of the duct when it rotates to minimize this effect so that the 
free-stream-turbulence intensity is then kept below 0.25 Yo. 

Signals are extracted from the apparatus via a slip ring and brush assembly which 
also provides access for power and control signals. Noise contamination of the output 
signals by the slip rings and transmission lines is negligible. The traverse 
stepping-motor logic and drive circuits ride on the tunnel and are controlled by signals 
generated by a digital circuit that allows the probe to be moved to preselected 
positions. Pressures are meaaured with a differential electronic manometer mounted 
on the tunnel so that the irrelevant centrifugal pressure gradient is not detected. The 
output of the transducer is amplified prior to the slip rings as a precautionary means 
of further increasing the signal-to-noise ratio and mean values are obtained by 
electronically integrating the signals over a minimum period of 30 a. Mean-velocity 
profiles are obtained using a flattened total-head tube. The static pressure varies 
nonlinearly across the duct when it is rotating owing to the Coriolis inertia force. The 
iterative procedure given in the Appendix of Johnston et al. has been used to estimate 
the local static pressure. Wall distances are determined from the traverse display 
which is initially set after finding the point where the probe is just leaving the wall. 
Traverse backlash and deflections due to  centrifugal forces are taken up under 
running conditions by lightly pressing the probe against the wall and then moving 
it away in 0.01 mm increments. The integrated output of the manometer is used to 
determine when the probe first leaves the wall. A constant wall-distance correction 
of 0.15 times probe height has been applied to all the boundary-layer data. 

Accurate measurements of the shear velocity u, are of primary importance for the 
scaling of turbulent boundary layers. Techniques such as the Clauser-chart and 
Preston-tube methods should be applied with caution in flows subject to mean- 
streamline curvature. Deviations from the universal inner law occur in these flows, 
yet both techniques implicitly assume universal behaviour of the velocity profde to 
function correctly. The Clauser-chart method will indicate incorrect shear velocities 
if the mean flow departs from the logarithmic law of the wall. On the other hand the 
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Preston-tube method assumes a universal inner law from the wall outwards. Hence 
it is possible to select a tube diameter such that it is wholly immersed in the viscous 
wall region (y' < 40). Because the Coriolis forces are small and viscous forces 
dominate, i t  is reasonable to expect minimal departures from universal behaviour in 
this region. All shear velocities have been determined using a Preston tube the 
diameter of which (d = 1.03 mm) was selected such that the Reynolds number 
d u J v  ( = d+) lies between 20 and 40. Each experimental estimate of the shear velocity 
is determined from the ensemble average of three measurements before, and three 
after, each run. The Preston tube has been calibrated in a long ( L / D  = 400, 
D = 0.1 m) smooth-walled pipe from static-pressure-drop measurements over the 
full range of shear velocities to be experienced. The calibration agrees with that of 
Pate1 (1965) to within 0.5 yo for higher values of d+ but deviations as high as 3 % are 
reported for lower values. 

Two constant-temperature hot-wire anemometers are mounted on the tunnel. A 
Disa 55P05 normal-wire boundary-layer probe is used to measure the streamwise 
turbulence intensity u)z and a modified Disa 55P61 crossed-wire probe is used to 
measure the transverse turbulence intensities d2,  wf and the kinematic Reynolds 
shear stresses u f v f ,  u fwf .  The tungsten filaments are replaced by Wollaston wire with 
etched sections 5 pm in diameter and 0.8-1.2 mm in length. A d.c. voltage is 
subtracted from each anemometer output and the resulting signal is amplified prior 
to the slip rings so that they lie between k 10 V over the range of velocities to be 
experienced by the wires. The frequency response of each anemometer is adjusted 
using square-wave injection to ensure a quadratic pole of optimum damping close 
to 20 kHz. After the slip rings the hot-wire system voltages are passed through 
fourth-order Krohn-Hite low-pass filters set at roll-off frequencies of 10 kHz. 

For routine measurements, such as the determination of r.m.s. velocities analog 
data-acquisition techniques still retain considerable advantages over digital methods. 
Most small laboratory computers are incapable of repeatedly sampling a hot-wire 
voltage, converting the measurement to a velocity through some nonlinear calibration 
inversion process and then performing the necessary arithmetic to produce the final 
r.m.s. quantities in an acceptable period of time. Processing information with analog 
circuits results in faster data acquisition than digital methods. The authors constructed 
a hybrid system where unscaled mean and r.m.s. quantities are determined by analog 
techniques and then passed to a digital computer for scaling and further processing. 
The system has been thoroughly tested against a PDP 11-10 mini-computer by 
applying the same turbulence signals to both systems. The results were always within 
a few percent of each other. The hybrid system not only proved to be an order of 
magnitude faster but also gave more repeatable results. 

For the normal wire, the amplified output is calibrated dynamically by shaking 
the probe sinusoidally in the free stream at ten representative velocities by a shaker 
attached to the tunnel. For the crossed-wire probe the amplified anemometer outputs 
are combined in such a way to produce a voltage sensitive only to streamwise 
velocities and a voltage sensitive only to transverse velocities. The small perturbation 
sensitivities to streamwise- and transverse-velocity fluctuations and to Reynolds- 
stress fluctuations are then determined directly and simultaneously by shaking the 
probe a t  45' to the free stream. The final third-order polynomial calibrations are 
derived from the sensitivities. The method closely follows that described by Perry 
(1982). To eliminate one source of error in regions of high turbulence intensity the 
authors constructed an analog linearizer in the form of two third-order polynomial 
function generators using analog multipliers and squarers. The linearizer is set 

-- 
-- 
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according to the coefficients of the third-order polynomials after the dynamic 
calibration. In practice, we always dynamically calibrate the entire system (including 
the linearizer) before taking measurements. This reduces the possibility of the 
accumulation of small errors and provides an overall check on system linearity. 

For each run, hot-wire-system drift is checked by integrating the output of the 
linearizer at a point in the free stream before and after taking measurements. Run 
data are rejected if the two inferred mean velocities differ by more than 0.5 %. The 
initial distance of the wires from the wall is determined by using a flat plate attached 
to the probe holder to complete an electric circuit by touching the tip of a needle. 
Traverse backlash and any deflections due to  centrifugal forces are taken up by lightly 
pressing the plate against the tip and then moving it away in 0.01 mm increments 
until the plate just leaves the needle. The initial wall distance of the normal wire is 
determined before each run by focusing a microscope with a graticuled eyepiece on 
the active section of the wire and its image in the perspex wall. For the crossed wires 
the wall distance is determined by focussing the microscope on the point where the 
wires appear to cross when viewed from the side. The microscope is also used to ensure 
that the three orientation angles of the crossed-wire probe relative to the free stream 
are very closely the same in both the traverse and shaker stings. The system voltages 
are used as a final check on the alignment which has always been found to be the 
same within a quarter of a degree of arc. The electric-contact method also serves to 
indicate the probe vibration during tunnel rotation is negligible. 

The power spectral densities of signals from the normal hot wire are measured with 
a HP 35828 spectrum analyser which is interfaced via the HP-IB bus to a PDP 11/23 
digital computer. The signals processed by the analyser are also simultaneously 
processed by our hybrid system so that ensemble averages of u'e and U can be used 
in the non-dimensionalizing process. 

4. Results and discussion 

4.1.1. MeanJow 
It was our intention to produce ordinary turbulent boundary layers that closely 

conform to known properties and then to subject these layers to spanwise rotation. 
Coles (1962) has pointed out that it is not as easy as is commonly supposed to produce 
such a typical turbulent boundary layer. The asymptotic state of full development, 
e.g. of the wake component, is approached in different ways depending on the tran- 
sition process. This observation is of special significance to our work since the limited 
duct length confines our study to layers which have been promoted by a tripping 
device and whose wake parameters are still developing at  the last streamwise 
measuring station. We decided to use a single trip wire and examine the properties 
of the developing boundary layers for three different free-stream velocities. 

The properties of the zero-rotation layers will be examined in detail later but for 
now we will consider the deviations AU+ of the rotating layer profiles from the 
logarithmic law of the wall in terms of (3). Throughout the work presented here the 
values of 0.41 and 5.0 have been assumed for the constants in the logarithmic law 
of the wall as recommended by Coles & Hirat (1968). The deviations are shown against 
non-dimensional wall distance in figures 2 (a) and (b). To avoid cluttering the figures, 
only the results obtained at the last streamwise station are shown for the three 
free-stream velocities used throughout the experiments. In  figure 2 (a)  least-squares 

4.1. Centreline results 
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FIQURE 2. Deviations (AU+) of rotating-layer mean-velocity profiles from logarithmic law of the 
wall. Last station only. (a) Lines of best fit through origin shown according to (3), i.e. linear variation 
of AU+ with wall distance. (b) Lines of best fit according to (4), i.e. logarithmic variation of AU+ 
with wall distance. Note better fit over larger range of y+ in the destabilized layers. 0, U, = 7.5 m/s; 
0,  10 m/s; 0,  15 m/s. 
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lines of best fit passing through the origin have been applied to the data in the range 
40 < y f  < 200. The upper limit corresponds to that suggested by Bradshaw (1969) 
for (3) and the lower limit has been selected by the authors to correspond to the end 
of the viscous wall region. For the destabilized layers the lines fit the data reasonably 
well and correspond to values of /? ranging from about 3 at the highest velocity to 
about 5 at the lowest velocity. The values are somewhat higher than those obtained 
by Bradshaw using the data of Johnston et al. For the stabilized layers the lines do 
not fit the data very well yet the squares of the correlation coefficients are around 
0.96 and indicate linear behaviour. This is because the lines of best fit do not pass 
through the origin. The values of /? range from 2 to 4 which are lower than those 
obtained by Bradshaw. So & Mellor (1972) found that /? = 4 gives a better prediction 
of curved boundary-layer flows but So (1975) found that /? = 6 gives a better overall 
prediction of all kinds of curved-flow data, meteorological data and rotating-channel 
data. Koyama et al. (1979a) report that /? varies between 1 and 4 for their boundary 
layers. It seems that there is an inherent arbitrariness in the model since various 
workers have adjusted the value of fl  to get agreement with the limited amount of 
data available. It should be remembered that the model is based on the approximate 
similarity of the effects of buoyancy, centrifugal and Coriolis forces in turbulent flows 
and is limited by the inevitable defects of the mixing-length and eddy-viscosity 
hypotheses. 

Rotation has a strong effect on the wall shear-stress distribution. Spanwise 
measurements of the skin-friction coefficient C; are presented in 54.2. For the 
destabilized layers there are large spatially periodic spanwise variations in C;. 
However, near the centreline these variations are smaller and are close to the mean 
value across the layer. The variation of C; along the centreline of the duct with 
Reynolds number based on momentum thickness R, is shown for the three fkee-stream 
velocities in figure 3. The zero-rotation results are close to the values recommended 
by Coles (1962) as being representative of a low-Reynolds-number turbulent boundary 
layer. The effect of rotation on these layers is also shown in the figure and, in all cases, 
the destabilized layers have larger values of C; and the stabilized layers have smaller 
values than the zero-rotation results. Each family of curves follows a pattern where 
the effect of rotation can be seen to increase with decreasing free-stream velocity. 

One effect of mean flow three-dimensionality, generated by secondary flows for 
example, would be to cause a momentum imbalance in the streamwise direction. The 
mean-flow momentum equations have the same simple form for two-dimensional 
zero-pressure-gradient layers on a stationary and a rotating boundary. One way of 
checking for the effects of three-dimensionality of the mean flow is to compare C; 
obtained with the Preston tube to the streamwise derivative of the momentum 
thickness. Accurate estimates of the derivative are difficult to obtain since they 
require differentiation of a large number of profde estimates with the inevitable 
uncertainty due to experimental scatter. This is especially true in our situation since 
we have only five streamwise measuring stations. It waa found that a second-order 
polynomial could approximate the variation of C; with streamwise distance with an 
accuracy of a few percent. The analytical integral of this expression has been used to 
predict the variation of the momentum thickness shown in figure 5. The unknown 
constant of integration, i.e. the effective origin of the layer, has been chosen such that 
the curves optimally pass through the data points. The agreement of the curves and 
the data points is excellent for the zero-rotation and stabilized layers ; however, some 
small imbalances exist for the destabilized layers. These are largest for the results 
at 7.5 m/s. In 54.2 i t  is shown that longitudinal vortices in the mean flow coincide 
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with the spanwise variations of C; in the destabilized layers. Although the strength 
of the vortices is weak in this region i t  is not surprising to find a small deficit in the 
momentum balance. It is worth noting that the effective origin for the rotating layers 
is not markedly different from that of the zero-rotation layers, i.e. the downstream 
influence of the trip wire for the rotating layers is not significant. 

It is appropriate to comment here on some of the final data-reduction techniques 
that we have developed and which have certain implications for our final results. 
Following Koyama et al. the authors wished to examine the mean-velocity profiles 
affected by rotation in terms of modified logarithmic law-of-the-wall constants. In  
order to give some credibility to the results a strategy that is free of subjective 
judgement was developed and firstly applied to the zero-rotation data. A least- 
squares logarithmic line,is fitted to data points that lie within a selected window of 
In y+. For each profile the upper and lower limits are chosen to maximize the window 
size under the restriction that the allowable deviation of the measured values of U+ 
from the line should be within some specified tolerance. The authors were surprised 
to find that the tolerance on the deviations of U+ could be made as low as 0.05, which 
is less than 0.5 yo of the measured values of the mean velocities. 

Watmuff, Witt & Joubert (1983) use a numerical Clauser-chart technique to make 
their zero-rotation profiles fit the logarithmic law of the wall with high precision. The 
technique optimizes u, and the wall distance of the closest data point to the wall, 
yi. Relative distances between data points are unaltered. Pitot tubes are subject to 
wall-proximity effects and Watmuff et al. attempted to minimize experimental 
uncertainty by calibrating their Pitot tube in the zero-rotation layers. They then 
altered the two parameters so that the innermost portion of the profiles affected by 
rotation optimally fitted the zero-rotation profiles close to the wall. In all cases the 
values of u, required for this operation were within 1 % of the Calibrated Preston-tube 
value and the alterations to yi were within 0.05 mm. The technique helped identify 
small errors in yi which were found upon subsequent reexamination of the recorded 
data. The mean-velocity profiles are now shown in figure 6, where the revised 
estimates of the initial wall distances and the calibrated Preston-tube values of u, 
have been used. 

The least-squares strategy has been applied to all our profiles and the lines of best 
fit are shown as solid lines in figures 6 and 2 (b) corresponding to the ranges of y+ that 
have been used. In  all cases, the constants for the zero-rotation profiles are close to 
the acceptedvaluesof0.41 and5.0. A highdegreeofprofilelinearityinsemi-logarithmic 
cordinates is indicated by the squares of the correlation coefficients which have values 
around 0.999. Since the correlation coefficients are of similar magnitude for the layers 
subject to system rotation and since the coefficients are larger than those obtained 
by assuming that the deviations vary linearly with wall distance (compare 
figures 2a and b), the authors feel justified, at least empirically, in using modified 
constants in the logarithmic law of the wall as the best way to describe the results, i.e. 

(4) U+=-lny++C,. 

One of the advantages of using the modified logarithmic-law approach is that the 
terminology used to describe ordinary boundary layers can also be given a precise 
definition when the layers are subject to system rotation. For instance, the strength 
of the wake component is a suitable parameter for characterizing the development 
of a low-Reynolds-number turbulent boundary layer. By defining a different logar- 
ithmic law, a corresponding - definition of the strength of the wake component can 
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FIGURE 6. Development of mean-velocity profiles in wall coordinates for three free-stream velocities 
under the three rotation conditions. (Symbols as in figure 3.) Station numbers labelled. Lines show 
regions of logarithmic mean-velocity variation. 

be made for layers subject to system rotation. The strength of the wake component 
relative to each logarithmic line of best fit is shown in figure 4 against R,. The results 
for the 7.5 and 10 m/s cases for zero rotation are typical of low-Reynolds-number 
boundary layers and follow the behaviour reported by Coles (1962). It is interesting 
to note that the 15 m/s case, presumably an overstimulated layer, has values that 
fall below his recommended values until after considerable development. Only the 
destabilized layers appear to be approaching asymptotic values that could be a 
characteristic of full development. For a given R, the stabilized layers have the largest 
strength of wake component while the destabilized layers have the smallest values. 

Koyama et al. plotted their estimates of K, and C, against the inverse Rossby 
number, Ro, = Bz/ V ,  ( V,  is the free-stream velocity and z is the distance downstream 
of the trip wire). Their results (kindly provided by H. Koyama) are shown in 
figure 7 (b) over the limited range of Ro, encountered in our experiments. These values 
were obtained at one free-stream velocity and at two rotational speeds. In figure 7 (a) 
K, is shown against Ro, for our data. Although there is quite a bit of scatter in the 
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FIGURE 7. Variation of modified logarithmic-law constant K~ with rotation parameters. (a) and (c), 
present investigation, B = +60 r.p.m. : 0, U, = 7.5 m/s; 0, U, = 10 m/s; 0, U, = 15 m/s. (b)  and 
(d), Results of Koyama et al. (1979a), U = 10 m/s: 0, B = f150 r.p.m.; 0, B = +lo0 r.p.m.; 
0 = no rotation. 

results, there does appear to be a trend for different free-stream velocities. Since the 
region where logarithmic behaviour is observed is close to the wall it  could be more 
appropriate to use the quantities v/u, and u, for the length and velocity scales. 
Then the inverse Rossby and Ekman numbers both become Qv/u,Z which can also 
be interpreted as the ratio of the rotation rate to the mean sublayer vorticity. 
Figure 7(c) shows our results with this scaling. For small Qvlu;, the empirical 
relationship 

1 QV - = 2.4-750 - 
Kr u: 

fits our results reasonably well. Although the result for our data looks promising the 
results of Koyama et al. show increased scatter when plotted against this parameter 
(see figure 7 4 .  Many combinations of different length and velocity scales were tried 
but the best results for our data is that shown in figure 7(c). Similar results are 
obtained for Cr which are not shown here. Since the layers of Koyama et al. were 
forming on the walls of a duct of constant cross-sectional area the boundary layers 
must have been subject to a mild favourable pressure gradient. Also the free-stream 
turbulence intensity of their duct was around 2 yo. The modified logarithmic-law 
constants could be functions of more than one variable ; however, later measurements 
by Koyama et al. (19793) indicate that there are spanwise mean-flow inhomogeneities 
near the centreline of their destabilized layers. In  54.2 profiles are presented which 
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Y +  

FIQURE 8. Mean-velocity profiles in wall region, U from normal hot wire, u, from Preston tube, 
21 profiles. Deviations from sublayer profile are independent of streamwise location, free-stream- 
velocity and rotation condition. (Symbols aa in figure 3.) 

have been obtained away from the centreline where there are spanwise variations in 
C; in the destabilized layers. Different behaviour is observed. 

In  order to provide a cross check on the Pitot-tube measurements mean-velocity 
profiles were also obtained with the normal hot wire. Considerable effort was made 
to obtain the most accurate measurements possible. In particular an attempt was 
made to get precise measurements in the viscous sublayer. Figure 8 shows the results 
of 21 profiles obtained under different rotation conditions, at different streamwise 
stations, for the three free-stream velocities used in the experiments. Although there 
is no discernible trend in the results for different rotation conditions, the data do not 
follow the sublayer relationship. The Preston-tube estimates of u, are about 12 % 
higher than that indicated by the velocity gradient near the wall. Similar differences 
have been observed by Blackwelder 8c Haritonidis (1983) in a turbulent boundary 
layer who found that the estimate of the u, from the slope of the logarithmic region 
was about 15 % higher than that determined by the velocity gradient near the wall. 
The authors could find no evidence to suggest that the anomaly is caused by errors 
in wall distance, calibration or wall-proximity heat-transfer effects for y+ > 5. The 
non-dimensional length of hot-wire filaments is between 20 and 40 for these 
measurements. The hot-wire data estimates of the logarithmic-law constants are all 
slightly lower than those found with the Pitot tube (e.g. K 0.39 from hot-wire data, 
K x 0.41 from Pitot-tube data in the zero-rotation layers), while a similar fit over 
the same range of y+ is obtained for all profiles. 

4.1.2. Turbulence measurements 

The streamwise development of C; and the strength of wake components for the 
zero-rotation layers a t  the free-stream velocities of 7.5 and 10m/s conform to 
documented properties of a low-Reynolds-number turbulent boundary layer. The 
layer with a free-stream velocity of 7.5 m/s shows the greatest effects caused by 
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rotation and is also the least likely to suffer from the effects of overstimulation. 
Detailed sets of turbulence-quantity profiles have been made in this layer as it 
develops with streamwise distance. Profiles have also been measured at the last 
streamwise station for the other two free-stream velocities. 

The development of streamwise turbulence intensity in wall coordinates is shown 
in figure 9 for the layers with a free-stream velocity of 7.5 m/s. As mentioned in $3 
the wall distance was determined by viewing the wire and its image in the wall with 
a microscope. However, very close to the wall even a small bow in the wire makes 
if difficult to define the effective centre of the wire with precision so that the same 
profile measured with two different wires may not collapse exactly in this region. A 
measure of experimental uncertainty is how repeatable a measurement is. In  order 
to get an estimate of the repeatability a particular zero-rotation profile was measured 
on 5 separate occasions. The peak turbulence intensities close to the wall were the 
samewithin f 2 yo. Withintheuncertaintyinwalldistenceandwithintherepeatability 
of the measurements, the results for the zero-rotation and stabilized layers at each 
station have the same distribution from the wall out to where logarithmic behaviour 
of the mean-velocity profiles is observed. In  particular the same peak values of p / u :  
between 7.3 and 7.6 are observed just outside the sublayer at y+ x 15. The 
distributions for the destabilized layers show strong similarity only for the first two 
streamwise stations. The peak values increme to around 8.0 with streamwise 
development. We were disturbed by this result since the deviations occur close to 
the wall where the flow should be universal. Many of these profiles were repeated on 
a number of occasions yet much the same results were obtained. 

Crossed-wire measurements corresponding to those taken with the normal wire are 
also shown in figure 9. The repeatability of the normal Reynolds stresses was found 
by experiment to be similar to that observed for the normal wire, i.e. &2%, but 
positive deviations of up to 8 % are observed from the normal wire estimates of p / u :  
in the regions close to the wall. The differences are most evident when the probe is 
aligned to measure spanwise velocity components. In this configuration the differences 
close to the wall are probably caused by mean shear across the filaments. When the 
probe is aligned to measure the velocity component normal to the wall much of the 
differences can be explained by errors in wall distance since the effective centre of 
the crossed-wire filaments is less well defined than that of the normal wire. The 
repeatability of the Reynolds stresses near the wall was found to be poorer, around 
f 5 %, for a given probe geometry. The authors found that variations as large as 
f 10 % were experienced in the same flow when the geometry was altered. 

Near the beginning ofthe region where the mean-velocity profilesexhibit logarithmic 
behaviour, the distributions of D'e/u: for the zero-rotation and stabilized layers appear 
to peel off from values around 1.1. A region of almost constant value can be seen to 
emerge with streamwise development. The measurements of the Reynolds shear stress 
- n / u :  are lower than expected close to the wall. Assuming that there is a small 
region of constant shear stress in the layer from the wall outwards, we would expect 
to find the value of non-dimensionalized shear stress to be close to unity provided 
that viscous stresses are negligible. In  the region of validity of the logarithmic law 
of the wall the viscous component is less than 6 %. Therefore these results a t  7.5 m/s 
could be in error by up to 10 yo. However, extrapolation of the profiles towards the 
wall does result in the expected value. The observation could imply a low-Reynolds- 
number boundary-layer phenomenon, i.e. the shear stress falls off rapidly from very 
close to the wall. Although there is a lack of reliable data in this form in the literature 
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for low-Reynolds-number turbulent boundary layers, the result could also be a 
property of the probe or instrumentation under these conditions (see Willmarth & 
Bogar 1977 for some disturbing experiences with crossed-wire probes close to the 
wall). It is likely that any errors would be of similar magnitude for the rotating-layer 
profiles so that our data are likely to show at least the correct trends. In  the stabilized 
and zero-rotation layers a small region of almost constant shear stress emerges near 
the wall with streamwise development. This is more evident in the zero-rotation 
layers. As is consistent with the normal-wire results, only the profiles at the first two 
stations for the destabilized layers show any similarity to the corresponding 
zero-rotation and stabilized-layer profiles of 2)'2/u: and - u"/u:. The values of the 
shear stress in this layer remain approximately constant over a much larger region 
which grows with streamwise development. 

It is difficult to provide an estimate of the errors associated with the measurements 
of 3 and m. Close to the wall they are most probably distorted by the effects of 
mean shear across the wire filaments. It seems that the values of are subject to 
gross errors for y+ < 100. Ideally should be zero in the stabilized and zero-rotation 
layers. It can be shown from the Reynolds stress tensor that even slight angular 
misalignment of the probe from its calibration orientation can lead to quite large 
values of this quantity due to contributions from the relatively large uf and wf 
fluctuations experienced near the wall. The consistently higher values of seen 
in the destabilized layers can be explained by the presence of the vortices (see $4.2). 
The development of w'B/u: follows the trend observed for Flu: for all layers. Within 
the relatively large uncertainty of these measurements the profiles peel off from what 
could be universal values of this quantity near the wall where logarithmic variation 
of the mean-velocity profiles begins. Once again the destabilized-layer profiles show 
considerable scatter. 

The results at the last station for each of the free-stream velocities are shown in 
figure 10. Here a direct comparison can be made with the quantities measured under 
different rotation conditions. The stabilized-layer profiles of Flu: lie slightly 
below the zero-rotation profiles in the turbulent wall region. Deviations from the zero- 
rotation profiles are observed in the destabilized layers for y+ < 15. Within the 
uncertainty of wall distance all the profiles collapse in the region closer to the wall. 
The lower peak turbulence intensities in the 15 m/s layers are probably caused by 
the poorer spatial resolution of the hot-wire filaments. The profiles of P / u :  and 
-m/u: remain roughly constant over a region that corresponds to where the 
mean-velocity profiles exhibit logarithmic behaviour. As is consistent with the 
mean-velocity profiles, this region is longer for the destabilized layers and slightly 
shorter for the stabilized layers. At  the higher free-stream velocities the Reynolds 
stress tends closer to expected values. For da/u,Z the zero rotation and stabilized 
profiles look similar close to the wall while larger values are observed in the 
destabilized layers. In  the outer region of the layers the distributions of P / u :  
resemble the profiles of P / u : .  Once again, close to the wall, the values of ulwl appear 
to be affected by the shear across the wire filaments. The larger values of ufwf in the 
destabilized layers are only evident at the lower free-stream velocities. 

The scaling of turbulence quantities in the outer region of a turbulent boundary 
layer is more complex. According to the Townsend ( 1976) Reynolds-number-similarity 
hypothesis, in the outer region of the flow the broad-band turbulence quantities 
should scale with u, and an outer lengthscale, e.g. the boundary-layer thickness 6. 
The Townsend hypothesis is valid strictly only in the limit of high Reynolds number. 
Nevertheless it is interesting to consider how well our low-Reynolds-number data 
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might scale with outer-flow variables. The development of the streamwise turbulence 
intensity using outer-flow scaling is shown in figure 11 (a). The zero-rotation-layer 
profiles show a reasonable degree of collapse for values of y/S greater than about 0.2 
and there is only a slight trend with increasing development. The stabilized-layer data 
show a slightly larger trend. However, the destabilized-layer data exhibit a higher 
degree of linearity and appear to collapse down to a value of y/S of about 0.1. This 
could be because the destabilized layer is more developed and has a larger turbulent 
wall region as noted in the previous section. The results at the last station showing 
the effect of rotation for each free-stream velocity are shown in figure 11 (b). The 
results at 7.5 and 10 m/s show a high degree of similarity while some variation is seen 
in the results at 15m/s. Similar trends are observed for the other turbulence 
quantities with outer-flow scaling but these are not shown. 

In  summary, except for the scatter in the destabilized-layer results, the inner region 
of the layers follow wall scaling. Regions of constant and -a emerge with 
streamwise development and correspond with where the mean-velocity profiles 
exhibit logarithmic behaviour. With outer-flow scaling a high degree of similarity is 
seen in all u'a profiles. It appears that unlike the mean-velocity profiles, the scaling 
of the turbulence quantities is not significantly altered by rotation. This is a 
surprising result. The effects of positive and negative rotation on the turbulence 
quantities appear to be similar to the effects of increased and decreased streamwise 
development. 

4.1.3. Spectra 

The power-spectral densities of signals produced by turbulence give an indication 
of the distribution of turbulent energy among the scales. To investigate further the 
effects of rotation, streamwise energy spectra have been measured in the layers at 
the last streamwise station for the free-stream velocity of 7.5 m/s. Following Perry 
& Abell (1977), the spectra are presented in the non-dimensional form gl(ky)/u? us. 
ky, where 

JOW W Y )  d(kY) = 3- 

Here #(ky) is the non-dimensional spectrum function and k is the non-dimensional 
wavenumber, calculated by assuming the Taylor hypothesis of a frozen turbulence 
pattern, i.e. k = 27cf/U,,, where U, is assumed to be the local mean velocity. 

From dimensional reasoning and region-of-overlap arguments applied to functional 
forms, Perry & Abell proposed that in the turbulent wall region a universal wall 
structure exists in which the spectrum function for the low-wavenumber region of 
the streamwise turbulence intensity is given by a -1 power law. Our spectral 
measurements are shown in figure 12(a) and there is clearly no region where the 
spectra show a - 1 power law. Perry & Abell tentatively set the limit for the existence 
of the universal wall structure in a pipe as y < O.ly/r and y > lOOu/u,. Assuming 
that the boundary-layer thickness is equivalent to the pipe radius r for scaling 
purposes, then only at the highest Reynolds numbers do our layers satisfy their 
criterion for the existence of a universal wall structure. At the low Reynolds numbers 
of our layers the concept of a universal wall structure does not appear to be applicable. 
However the spectra do appear to be confined within a -$ power-law envelope. 

Figure 12 (b) shows a direct comparison between spectra obtained under different 
rotation conditions for a range of common dimensionless wall distances. The spectra 
measured in the viscous wall region are essentially the same for the three flows and 
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FIGURE 12(a). For caption see opposite page. 

confirm the observation from the broadband results that the flow here is unaffected 
by rotation. Further from the wall the spectra demonstrate that it is the low- 
wavenumber spectral components alone that are responsible for the changes in the 
streamwise turbulence intensity due to rotation (see figure 10). The high-wavenumber 
regions are common to the three layers independent of rotation. Hunt & Joubert 
(1979) obtained similar results for fully developed curved-duct flow, i.e. only the 
low-wavenumber spectral components were affected by surface curvature. The outer 
(concave) wall low-wavenumber spectra have more energy and those of the inner 
(convex) wall have less energy than the corresponding straight-duct results. For our 
results the affected region of wavenumbers is given approximately by l/k8 greater 
than 0.5. 

4.2. Spanwise measurements 
As mentioned in $3 the spanwise variation of Ci is around f 26 % for the zero-rotation 
layers. However, much larger variations are observed in the layers subject to 
spanwise rotation. The results of a series of traversing Preston-tube investigations 
throughout the central half-height of the duct are shown in figures 13 (a )  and (b) .  Large 
variations which are almost spatially periodic in the spanwise direction can be 
observed in the destabilized layers. As with any two-dimensional turbulent boundary 
layer, ideally the destabilized layers should not exhibit spanwise variations of mean- 
flow quantities. The increased sensitivity in the presence of the Coriolis force probably 
causes the flow structures to lock into weak upstream disturbances (e.g. caused by 
wind-tunnel screens, see Bradshaw 1965) as the layer develops. The stabilizing 
influence of the Coriolis force should dampen any disturbances and near the duct 
centreline the spanwise variations of C; in the stabilized layer are indeed slightly less 
than those of the zero-rotation layer. The influence of secondary flows is thought to 
cause the variation of C; away from the centreline in the stabilized layer and will be 
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confined to -t power-law envelope. (b)  Displacement of data shows it is the low-wavenumber region 
(i /M 2 0.6) alone that is affected by rotation. (Common y+values labelled). ---, destabilized, -, 
no rotation, * - * - , stabilized. 
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FIGURE 13(a). For caption see opposite page. 

discussed in $4.3. The spanwise coordinate z in figures 13 (a) and (b) has not been non- 
dimensionalized by the layer thickness since 6 varies with C; across the destabilized 
layers. For example at z = 45 mm, which is a C; maximum, S z 33 mm (see figure 15), 
while at z = 65 mm, which is a C; minimum, 6 x 42 mm. Even if a representative 
thickness was defined (e.g. the average across the layer), this quantity would grow 
with streamwise development and depend on the free-stream velocity. Normalizing 
z with this quantity would therefore hide the following features: (i) the spanwise 
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FIQWRE 13. Spanwise variation of C; across central half-height of layer. Results normalized with 
mean value. Streamwise stations labelled. (a) U, = 7.5 m/s, (a) U, = 10 m/s. (Symbols iia for 
figure 3.) 

locations of the peaks are very nearly invariant with streamwise development; and 
(ii) there are negligible differences in the spanwise spacings for the two free-stream 
velocities. However, it is noted that the spanwise spacing of the peaks at the last 
station is approximately half the layer thickness (see figure 15). Also, the amplitudes 
of the spanwise variations grow with streamwise development at  a decreasing rate. 
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Mean-velocity-vector field in (y, ,+plane of destabilized layer. Last stal on, 
U, = 7.5 m/s, mean u, = 0.363 m/s across cantrh‘half-height of layer. Leigth of arrowheads 
corresponds to 0.0626 m/s. Streamwise flow is out of page. Integrated streamline pattern and 

pontoure of mean streamwise vorticity (q), mean streamwise velocity U and Reynolds-stress 
components (3, 3, p, -m, m) superimposed. Variation of C; also shown. CI = contour 
increments. 

The theoretical analysis of Gortler (1940) shows that the centrifugal instability of 
a laminar boundary layer on a concave wall should lead to a system of streamwise 
vortices with a definite spanwise wavenumber. In an experimental investigation Tani 
(1962) found that the spanwise wavenumber was independent of the free-stream 
velocity. He suggested that the observed invariance of the wavenumber could be a 
particular feature of his apparatus. Bippes (1972) found that the spanwise spacing 
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FIGURE 14 (continued). For caption see opposite page. 
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FIGURE 15. Same as figure 14 but further from centreline. The strength of the mean-streamline 
pattern and the contours correlate strongly with the C; variation. Arrows below skin-friction 
distribution indicate spanwise location of profiles in figure 1 I. 

of the vortices depends on the nature of disturbances in the free stream. By making 
the free stream as isotropic as possible he showed that the most amplified wavelength 
predicted by the theory could be observed experimentally. Swearingen & Blackwelder 
(1983) perturbed the various parameters thought to affect the spanwise spacing of 
the vortices and showed that the spacing is most strongly dependent on the nature 
of the final wind-tunnel screen. For turbulent boundary layers on a concave wall Tani 
also observed spanwise variations in the mean velocity a t  a constant height above 
the wall. He suggested that the variation could be explained by the presence of 
longitudinal vortices in the mean flow analogous to the Taylor-Gortler vortices in 
the laminar boundary layer. So & Mellor (1972) observed similar variations. Smits 
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et al. (1979) also observed spanwise variations in C; and Reynolds stresses downstream 
of an impulsive change in wall curvature. Following Tani, these authors suggest the 
existence of streamwise vortices in the mean flow. 

We set out to test this idea in our rotating layers by making measurements in a 
cross-stream plane normal to the wall. After calibration for the velocity component 
normal to the wall, the crossed-wire probe was traversed through the layer along rows 
at 5 mm intervals from the wall and mean values were obtained at  5 mm intervals 
along each row so that the data lay on a square grid. Measurements of the Reynolds 
stresses were also recorded. The measurements of the spanwise-velocity components 
were obtained subsequently using the same techniques. Hot-wire drift was monitored 
by returning the probe to its initial position after traversing each row. The 
mean-velocity vectors shown in figures 14 and 15 clearly show an array of vortex-like 
structures of alternate sign. As far as the authors are aware, this is the first time that 
direct evidence has been presented for the existence of longitudinal vortex-like 
structures in the mean flow coinciding with spanwise variations of mean-flow 
quantities in turbulent boundary layers. The C; maxima correspond to regions where 
the mean flow is directed towards the wall and the minima where the flow is leaving 
the wall. The magnitudes of the mean-flow vectors are related to the size of the C; 
variations which are also shown in figures 14 and 15. In particular the pattern is weak 
near the centreline of the duct where the variations in C; are small. The authors 
suggest that the relationship between the vectors and the spanwise-C; variations is 
almost certainly the same at the other streamwise stations. 

It is necessary to comment on the way that the data have been processed. The 
length of the vector arrowheads corresponds to a cone-angle variation of about half 
a degree of arc away from the mean values along each row. The cone-angle variation 
is then only a little larger than the uncertainty in the alignment of the probe in the 
traverse sting. Therefore the velocity vectors were calculated from velocity 
perturbations about the mean values V and W along each row which were indicated 
from the hot-wire calibrations. The changes in the mean velocities from row to row 
correlate strongly with the small amount of drift experienced by the wires during the 
experiments. Although the data for each velocity component were collected during 
a single continous run, the data were divided into two batches with a relatively large 
region of overlap to facilitate plotting. The data were processed independently yet 
the differences between the vectors in the region of overlap are almost indiscernible. 

It is interesting to consider what the mean-streamline pattern might look like 
surrounding the vortices. It is difficult to infer the exact nature of streamlines from 
velocity vectors so the mean-streamline pattern has been calculated using a numerical 
technique. Least-squares polynomial surfaces of best fit have been applied to the data 
over small rectangular regions of the grid as 

dz dY - dt = W(y, z ) ,  - dt = V(y,z). 

The equations have been integrated numerically using a second-order predictor- 
corrector method to give each streamline y = &). The size of the regions for fitting 
the polynomials is 5 x 5 grid points. A total of 18 such regions have been overlaid 
symmetrically on each grid and 4th-order polynomials are used for the fit. A desirable 
feature of the polynomial fits is that slight smoothing of the experimental data is 
obtained. For each point along the streamlines the region whose centre is closest is 
the one that is used for the calculations. Up to 1000 points are used for each 
streamline. 
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The most striking feature of the mean-streamline pattern is that the flow 
alternately spirals in towards regions of positive streamwise vorticity and away from 
regions of negative vorticity. These unusual spiralling patterns could be due to 
uncertainties in the velocity measurements; however, the same wires and calibration 
methods were used to measure both velocity components. While the strength of the 
vortex-like patterns depends on the absolute magnitudes of the hot-wire-system 
sensitivities, the computed streamlines depend only on the relative magnitudes. The 
spiralling mean-streamline pattern must be three-dimensional from continuity 
considerations which implies an acceleration of the u-component of velocity. Since 
these measurements have only been taken at the last station we do not have an 
independent confirmation of the implied acceleration from continuity considerations. 
The authors suggest that the mean flow consists of spiralling streamlines which 
surround continuous longitudinal vortices and that the spiralling is related to the 
growth of the C; variations observed in figure 13. 

The Streamline patterns have also been computed using slightly larger regions (7 x 5 
grid points) for the fit which allow 5th-order polynomials to be used. Much the same 
results were obtained independently of how the regions were overlaid on the grid, i.e. 
the streamlines were seen to spiral in towards the regions of positive vorticity and 
out of regions of negative vorticity . Other features of the higher-order polynomial-fit 
solutions, such as limit-cycle trajectories surrounding the vortices, were also observed. 
In  many cases the vortex-core size indicated by the limit cycle was larger for the 
vortices where the flow spirals out and smaller or non-existent where the flow spirals 
in. This is consistent with the notions of vortex stretching and contraction. However, 
the authors doubt whether detailed features such as the size of vortex cores can be 
seriously considered with the relatively coarse grid size and techniques that have been 
used. 

The method of approximating small regions of the grid data with polynomial 
surfaces of best fit has been applied to all the other quantities that were measured 
simultaneously. The polynomial expressions allow contours of these quantities to be 
calculated and related to the mean-streamline pattern. The contours of mean 
streamwise velocity shown in figures 14 and 15 correlate strongly with the mean- 
streamline pattern. For example, the contours dip towards the wall where the mean 
circulations induce high-velocity fluid in the outer flow towards the wall. The 
corrugations of the contours are also related to the strength of the patterns. In  
particular the contours are flatter near the centreline where the mean motions are 
weaker. The contours of the Reynolds stresses P, 3 and -a are also strongly 
related to the pattern and look similar to those of the mean velocity. The contours 
extend towards the free stream as the turbulent motions close to the wall are 
convected outwards by the action of the vortex-like structures and the contours 
approach the wall where less turbulent outer-flow fluid is brought inwards. The 
contours of have similar properties with the exception that the maxima form closed 
contours away from the wall where the mean flow is directed outwards. This is 
expected since these velocity fluctuations are inhibited by the wall. The contours of 
ufwf  are perhaps the most interesting since they undergo changes of sign. The 
turbulent shear stress tends to oppose the spanwise motions of the vortex-like 
structures near the wall. 

It is worth noting that the peak positive values of ufwf are nearly twice aa large 
as the magnitude of the peak negative values. The differences could be caused by a 
slight probe misalignment or to shear effects on the wire filaments. However, the 
contours of zero mean spanwise stress align very well with the region where the mean 

- 

- 
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flow is directed normal to the wall. Nevertheless the data reduction process assumes 
that V = W = 0 along each row of data and this assumption could be grossly incorrect 
since a small mean spanwise velocity, caused by secondary flows for example, could 
exist in the real flow. Streamline patterns depend on the relative velocity of the 
observer and our patterns could be distorted by observing the data at an incorrect 
velocity. Vorticity is a quantity that is invariant with the velocity of the observer. 
The mean streamwise vorticity has been calculated from the analytical derivatives 
of the polynomial expressions used to produce the mean-streamline pattern. Poly- 
nomial surfaces of best fit have been applied to the derived vorticity field in the same 
way as for the Reynolds stresses so that the contours shown in figures 14 and 15 could 
be produced. The peak amplitudes of the mean vorticity are less than 2% of the 
sublayer vorticity and are about 20 times the rotation rate. Both the contours of the 
Reynolds stresses and the contours of streamwise vorticity indicate that our 
mean-streamline pattern has been viewed in a reference frame that is very nearly 
stationary with respect to the vortices. 

In a recent flow-visualization study of developing turbulent boundary layers over 
a concave wall, Jeans & Johnston (1982) observed large-scale structures which were 
about half the layer thickness in span and coherent over the height of the layer for 
only several layer thicknesses downstream. Spanwise mean-velocity profiles and 
turbulence measurements confirmed the findings of the visualization study that the 
appearance of the large-scale structures was sporadic and randomly positioned in 
space and time. Their observations suggest that these structures are strongly 
three-dimensional. The observations of Johnston et al. (1972) in fully developed 
rotating duct flow indicate that the time-averaged streak spacing ( 2 1OOv/u,) is close 
to the value found by Kline et al. The large-scale roll cells, whose size is of the order 
of the duct width, were seen to be very unsteady and randomly positioned in space 
and time. Jeans & Johnston have also suggested that the spanwise variations of the 
mean-flow quantities observed by other workers could be caused by weak upstream 
disturbances introduced by screens which cause the large-scale structures to con- 
tinually form at fixed spanwise positions. 

From convincing flow-visualization studies Head & Bandyopadyay (1 981) have 
shown that a turbulent boundary layer consists of a ‘forest ’ of hairpin or A-vortices 
which become finer and more densely packed as the Reynolds number is increased. 
They suggest that the spanwise spacing of the vortices follows the Kline scaling. By 
making plausible assumptions about the distributions of these vortices Perry 6 Chong 
(1982) were able to derive a logarithmic variation for the mean flow, broadband 
turbulence-intensity distributions and spectra which are consistent with measured 
data. It is likely that the streaks observed near the wall by Kline et al. and the 
associated motions classified as bursts and sweeps are caused by these hairpin 
vortices. The work of Johnston et al. and Jeans & Johnston indicates that, although 
the rate of bursting may be affected, essentially the same streaky structures are seen 
near the wall for layers destabilized by rotation and surface curvature. It is probable 
that the weak rotation that we have imposed could serve merely to amplify or 
attenuate the ordinary structures of a turbulent boundary layer. Our spectral 
measurements indicate that it is only the low-wavenumber spectral components that 
are affected by rotation. Perhaps the mean patterns that we observe are caused by 
large-scale versions of A-vortices, for example, which form at preferred spanwise 
positions as they convect past our wires. 

A simple kinematic model has been used to test whether the motion of such 
three-dimensional structures could produce an averaged pattern similar to our 
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results. An array of three A-vortices is shown in figure 16 (a) .  For simplicity the vortex 
rods are assumed to be straight since this enables analytical integrals to be obtained 
for the induced velocities using the BioeSavart law. The model is the same as that 
used by Perry & Chong except that a Gaussian vorticity distribution surrounding 
the rods has been used instead of infinitesimal filaments. Images of the rods are needed 
to obtain the correct boundary condition and these are not shown in the figure. All 
Biot-Savart integrations were calculated without regard to the extra circulation due 
to system rotation. It was found that an array of three structures was sufficient to 
approximate the asymptotic pattern near z' = 0 obtained by using progressively 
larger arrays. In  order to simulate convection of the structures past our wires the 
component of a probability density function (p.d.f.) is assumed to be uniform in the 
streamwise direction. Spanwise jitter is simulated by assuming a Gaussian p.d.f. for 
the component in the spanwise direction. The combined p.d.f. is approximated by the 
discrete distribution which is shown in figures 16(b) and ( c ) .  The averaged pattern 
of the velocity vectors is shown in figure 16(d), where contours of the averaged 
induced-velocity perturbations in the plane normal to the vectors have been 
superimposed. Of course this model is very crude and does not attempt to simulate 
different-sized groups of interaction between the vortices. Nevertheless the averaged 
pattern of velocity vectors and streamwise velocity contours bear a resemblance to 
our mean-flow results and therefore lends credibility to the idea that the longitudinal 
vortices observed in the mean-flow pattern need not necessarily be the result of 
averaging instantaneous structures of large streamwise extent. 

Computed streamlines (not shown) for the patterns in figure 16 (d) do not have the 
spiralling features observed in the experimental results. The vorticity-transport 
equation in a rotating frame is 

aw -+ u v w  = (w+2a) 'vu+Vv20 .  
at 

The first term on the right-hand side requires three-dimensional flow for its existence 
and represents the amplification or attenuation of vorticity by extension or con- 
traction, and by tilting (i.e. rotation) of the vortex lines. The contribution from 
system rotation will serve to further alter any background vorticity depending on the 
gradient of the velocity vector along the axis of rotation. In  the mean flow the extra 
term owing to rotation is QaU/az.  Examination of figures 13 and 14 reveals that a 
positive streamwise velocity gradient along the rotation axis is associated with 
regions of positive vorticity. In  these regions the mean flow is spiralling inwards, 
which implies that the mean vorticity is increasing with streamwise distance, owing to 
stretching. On the other hand a negative velocity gradient is associated with regions 
of negative vorticity. In these regions the mean flow spirals outwards, which implies 
that the mean vorticity is decreasing, owing to contraction. In terms of the A-vortex 
model one possible explanation is that fluid, i.e. vortical fluid, flows up one leg and 
across and down in the other leg of each instantaneous structure. There is some 
evidence for this. Jeans & Johnston observed horseshoe vortices in the transition 
phase of a laminar boundary layer over a concave surface. Examination of their 
figure 26 reveals that dye representing vortical fluid originally from the wall appears 
to accumulate on one side of the horseshoe vortices. Superposition of line sources 
and sinks on the vortices shown in figure 16(a) could produce a mean-streamline 
pattern that more closely resembles our experimental results. 

Since the spanwise variation of Ci in the destabilized layers is small near the 
centreline and since the values here are close to the mean value across the layer at  
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FIGURE 16. (a) Array of three identical A-vortices used to produce mean-vector field in (y, z)-plane 
fixed at x = 0. Gaussian vorticity distribution assumed uniform along each vortex rod, i.e. 
w = wo exp [ - ; ( r / ~ , ) ~ ] ,  where r = radial distance from rod axis, r,/A = 1/20, q5 = 45O, h/A  = 8. (a) 
Uniform component of p.d.f. in streamwise direction used to simulate motion of structures past 
the (y, %)-plane. (c) Component of p.d.f. in spanwise direction used to simulate the effects of jitter. 
Diacrete distribution approximates Gaussian p.d.f. with non-dimensional variance crz,/h = i. (d )  
Results of simulation. Mean-velocity-vector field and contours of averaged induced-streamwise 
velocity (arbitrary scaling) resemble experimental results shown in figures 14 and 15. (V, is 
convection velocity of vortex array.) 
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each streamwise station, the flow on the centreline could be representative of the layer 
as a whole. We propose that structures similar to those occurring away from the 
centreline could exist near the centgeline, but subject to a larger amount of spanwise 
jitter. The larger jitter would further smear. the flow pattern, causing the strength of 
the mean pattern to be diminished. Perry & Watmuff (1981) demonstrated the effect 
of jitter on the washout of phase-averaked patterns h the wake behind a three- 
dimensional ellipsoid. Given the properties of re&sentative vortices and their PDF's 
of position, one could in principle derive the temporal jnean-flow field. 

In order to test this proposal, profiles have been meawed at positions corresponding 
to a maximum and a minimum of C; and at ~ J J  internkdiate position through one 
of the vortices. The mean-velocitx profiles obtained with the normal hot wire are 
shown in figure 17(a) together with'the profile obtained at the centreline. Although 
the profiles collapse near the wall, deviatiom from the centreline profile occur for 
y+ > 30 and only the profile near the minimum C; sholys an extensive region where 
the mean-velocity variation is logarithmic with wall distance. The profiles at the 
skin-friction minimum and at the intermediate position appear to be similar for values 
of y+ < 150 but deviate further from the wall. The profile at the skin-friction 
maximum has the largest deviation in the wall region and continues to the free stream 
with almost no identifiable wake. The autho? could%ot find a simple statistical 
weighting that would produce a composite profile similar to that obtained on the 
centreline. Evidently a larger number of more closely spaced profiles would be needed 
before any definite conclusion can be drawn regarding our proposal. As a matter of 
interest turbulence profiles have also been m e a s e d .  The features of the crossed-wire 
profiles (which are not shown here) can be explained i~ terms of cuts through the 
contours in figures 14 and 15. The streamwise-turbulence-intensity profiles are shown 
in figure 17 (b) where the off-centreline results have been non-dimensionalized with 
the local value of u,. There is a lot of variation between them, even close to the wall. 
The same data are shown in figure 17(c) but here the Fntreline value of u, (which 
is close to the mean value) has beeh used to reduce the data. The better agreement 
of the results for values of y+ < 40 is an unexpected result since the mean-velocity 
profiles appear to collapse close to the wall when-non-dimensionalized with the local 
value of u,. 

4.3. Se+ary #ow 

As mentioned in the introduction, secondary flows generated by the top- and 
bottom-wall Ekman layers can have an undesirable e@ct on the layers developing 
near the centreline of a rotating duct. Speziale (1982) conducted a numerical study 
of fully developed laminar flow'in rotating ducts of different aspect ratios. At 
weak-to-moderate rotation rates he showed that ~t counter-rotating double-vortex 
secondary flow forms in the transverse plane which is confined to the top and bottom 
walls. The diameter of the vortices is of the order of the duct width irrespective of 
the aspect ratio. At more rapid rotation rates the secondary flow extends further into 
the interior. If the rotation rate is increased further still the secondary flow in a 2 : 1 
aspect-ratio duct splits into a pair ol'counter-rotating vortices while the secondary-flow 
vortices remain near the top and botfQm walls. Speziab & Thangham (1983) have 
shown that for an 8 : 1 aspect-ratio duct the secondary flow splits into three pairs of 
counter-rotating roll cells which are distributed throughout the central region. A 
slightly stretched and asymmetric secondary flow remains near the top and bottom 
walls. 

The numerically obtained values of the stability parameters for the onset of roll cells 
are in excellent agreement with the experimental and theoretical results of Hart 
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FIQURE 17. (a) Mean-velocity profiles obtained with normal hot wire at various spanwise positions 
in destabilized layer, last station, U, = 7.5 m/s. Profiles non-dimensionalized with local value of 
u,. *, near C’ maximum; A, centreline profile; 0, near C’ minimum; 0, between max. and min. 
C; (see figure 15 for spanwise position of profiles). (b) Streamwise turbulence intensity distribution 
corresponding to mean profiles in (a). Variation close to wall is evident. (c) Same as (b) but with 
centreline value of u, used to non-dimensionalize data. Agreement near the wall is better. 

(1971) and Lezius & Johnston (1976). Lezius & Johnston also used a linear stability 
analysis with turbulence modelling to predict the onset of roll cells in fully developed 
turbulent duct flow which agreed very well with their experimental observations. 
There is strong evidence to  suggest that the onset of roll cells in a large-aspect-ratio 
duct constitutes an instability independent of the secondary flow. 
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FIGURE 18. Meau velocity vectors in (y, 2)-plane through duct. Last station. U, = 7.5 m/s. Length 
of arrowheads corresponds to 0.0625m/s. Near extremities of measured region the pattern is 
consistent with weak secondary circulations near the top and bottom walls. Streamwise flow out 
of page. 

The influence of secondary flows in our duct has been examined using the method 
of traversing the crossed-wire probe through the measurable Fgion of the duct as 
a whole. Here it i s  not possible to traverse the probe completely from wall to wall, 
so the measurements were made on the same wall bht with the two different rotation 
conditions applied in succession. The measurements were taken at 20 mm intervals 
along successive rows at 20 mm increments from the wall out to the duct centreline. 
The vectors for the stabilized side of the duct were reflected about the centreline to 
allow a composite view of the flow pattern to be produced. The results are shown 
for the last streamwise station at 7.5 m/s in figure 18. From the spanwise-skin-friction 
measurements these appear to be the conditions for which the secondary flow is 
strongest. 

The method of surface fitting the velocities and integrating the mean-streamline 
patterns could not be successfully applied to the whole pattern for two reasons. 
Firstly the velocities in the central region of the duct are weak so that the streamlines 
suffer from the random effects of lack of experimental-data convergence. Secondly 
the vortex-like structures in the destabilized layers are more or less randomly sampled 
due to the relatively coarse grid size. Weacmotions, almost certainly caused by 
secondary flows, are evident near the extremities of the measured region. However, 
the central region of the duct has a uniform low-turbulence free stream with 
negligible cross-stream velocity components. Near the stabilized side of the duct the 
spanwise mean-velocity components are directed towards the centreline. The motions 
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FIGURE 19. Mean-velocity-vector field in (y, +plane of stabilized layer. U, = 7.5 m/s, mean 
u, = 0.305 m/s across half-height of layer. Length of arrowheads corresponds to 0.0626 m/s. 
Streamwise flow out of page. Contours of U and variation of C; also shown. Contours of p, p, 
wlP and -a (not shown) have similar degree of flatness. 
- 

appear to be related to the C; variations and seem to be distinct from the endwall 
secondary flows. For completeness, this region has also been mapped using the method 
of traversing the crossed-wire probe. The mean-velocity-vector field in figure 19 
indicates that the spanwise velocities are confined mainly to the layer, yet the 
contours of the mean streamwise velocity and the Reynolds stresses 3, p, and 
-m (not shown) are parallel to the wall. The value of the shear stress at the 
extremities of the measured regions differ from that on the centreline by +O.O7u;. 
Assuming that the cross-stream velocities are related to the spanwise variation of Cf, 
it  appears that only the results at the last station could be affected. Since the 
stabilized layers exhibit an excellent momentum balance we conclude that the effect 
of the cross-stream motions is weak and that they have had little influence on the 
centreline profiles. 

In the destabilized layer, the spanwise C; variations are clearly recognizable from 
the second station onwards (see figure 13). The variations in Cf appear to fluctuate 
about the same value across the full measured span at each station. The spanwise 
locations of the peaks are nearly invariant with streamwise development. If anything 
a slight divergence away from the centreline is detectable a t  the last streamwise 
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station. These observations suggest that the destabilized flow has not originated from 
the two endwalls, but rather, like the roll cells in fully developed duct flow, the 
vortex-like structures are the result of the Coriolis instability and are independent 
of the secondary flow and therefore would exist in ducts of larger aspect ratio. 

5. Conclusions 
Low-Reynolds-number turbulent boundary layers developing in a zero pressure 

gradient have been subject to rotation about a spanwise axis. Without rotation the 
layers conform to documented properties and have negligible spanwise irregularities. 
The mean-velocity profiles effected by rotation are described in terms of a common 
universal sublayer and modified logarithmic and wake regions. Theories based on the 
analogy between buoyancy, surface curvature and rotation suggest that the deviations 
of the rotating-layer profiles from the logarithmic law of the wall should vary linearly 
with wall distance. Our data show a better fit if the deviations are assumed to vary 
logarithmically with wall distance. In  effect this is equivalent to a modification of 
the constants in the logarithmic law of the wall. Compared with the zero-rotation 
layers, the centreline profiles of the destabilized layers exhibit logarithmic regions 
with lesser slopes which extend further from the wall while the relative strength of 
the wake components are smaller and appear to be approaching asymptotic values 
with less streamwise development. Opposite trends are observed in the stabilized 
layers. 

The turbulence quantities follow an inner and outer scaling independent of 
rotation. The effect appears to be similar to that of increased or decreased development. 
Regions of constant shear stress emerge with streamwise development which 
:orrespond to where the mean flow shows logarithmic behaviour. This is most evident 
in the destabilized layers. Streamwise-energy spectra indicate that it is the low-wave- 
number spectral components alone that are affected by rotation. 

Rotation has a marked effect on the wall-shear-stress distribution. For a given 
streamwise distance the Stabilized layers have a lower value of C; while the 
destabilized layers have higher values, the effect increasing with decreasing free-stream 
velocity. In  the stabilized layers the spanwise distribution of C; is uniform over the 
central half-height of the duct but falls towards the extremities. This effect can be 
attributed to large-scale secondary circulations which are confined to the extremities 
of the duct. The excellent momentum-balance, cross-stream mean-flow and turbulence 
measurements in the stabilized layers suggest that the secondary flow has had 
negligible influence near the centreline. 

Large spatially periodic variations in C; are observed across the destabilized layers. 
However, near the duct centreline the variations are smaller and the layers have a 
reasonable momentum balance. Mean velocity vectors in a cross-stream plane normal 
to the wall clearly show an array of vortex-like structures of alternate sign which 
correlate strongly with the skin-friction pattern. The streamwise development of the 
spanwise C; distributions suggests that the destabilized-flow structure has not grown 
from the two endwalls. The numerically integrated mean-flow Streamlines spiral in 
towards regions of positive vorticity and away from regions of negative vorticity. 
Contours of the Reynolds stresses dip towards the wall where less turbulent outer-flow 
fluid is brought inwards and extend away from the wall as turbulent wall motions 
are convected outwards by the action of the vortex-like structures. Using a simple 
three-dimensional model i t  is shown that the mean-flow pattern could be the result 
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of averaging instantaneous structures that are similar to those occurring in ordinary 
turbulent boundary layers, but which form a t  preferred spanwise positions. 

Near the duct centreline the spanwise variations of Ci are smaller, the mean- 
streamline pattern is weaker and the contours of the Reynolds stresses are flatter than 
elsewhere across the destabilized layer. Off-centreline mean-velocity profiles measured 
through different regions of a vortex-like structure collapse near the wall when 
non-dimensionalized with the local value of u,. Further from the wall the profiles differ 
from each other and from the centreline profile. Curiously the streamwise-turbulence- 
intensity profiles non-dimensionalized with the local value of uT show considerable 
scatter even close to the wall. However if the data are non-dimensionalized with the 
mean value of u, across the layer the profiles are in good agreement in this region. 
In spite of a reasonable momentum balance along the centreline the question arises 
as to whether the measurements here are characteristic of the layer as a whole. We 
have proposed that large-scale instantaneous structures, similar to those used in the 
model for example, could occur across the full span of the layer. The weaker mean-flow 
pattern near the centreline could be the result of larger spanwise jitter. However, a 
composite profile resembling that on the centreline could not be constructed from the 
limited number of off-centreline profiles. More elaborate experimental techniques 
would be needed to resolve the question of whether the instantaneous flow structure 
on the centreline is different to that elsewhere in the layer or whether the results here 
are simply caused by more jitter. 

Even the weak vortex-like structures found on the centreline of the destabilized 
layers have a strong effect on the distribution of the Reynolds stresses. Similar effects 
could occur in less complex flows. Even in the simplest of flows, small spanwise 
variations of C; usually exist which are difficult to remove. Perhaps similar mean-flow 
structures are associated with these spanwise C; variations and are responsible for 
the differences, especially in turbulence quantities, measured by various workers in 
nominally identical flows. The need for three-dimensional measurements in complex 
flows has been demonstrated. What is needed are theories which take this three- 
dimensionality into account. 
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